## Problem 1.35

An Abel equation has the general form $y^{\prime}=a(x)+b(x) y+c(x) y^{2}+d(x) y^{3}$. Solve the particular equation $y^{\prime}=d y^{3}+a x^{-3 / 2}$, where $d$ and $a$ are constants.

## Solution

Multiply both sides of the equation by $x^{3 / 2}$.

$$
\begin{equation*}
x^{3 / 2} \frac{d y}{d x}=d x^{3 / 2} y^{3}+a \tag{1}
\end{equation*}
$$

Make the following scale transformations.

$$
\begin{aligned}
& x \rightarrow b x \\
& y \rightarrow b^{p} y
\end{aligned}
$$

If there is a value of $p$ that leaves the ODE unchanged, then it is said to be scale invariant, and progress can be made in solving it.

$$
(b x)^{3 / 2} \frac{d\left(b^{p} y\right)}{d(b x)}=d(b x)^{3 / 2}\left(b^{p} y\right)^{3}+a
$$

Pull the constants out of the derivative and separate the $b$ terms from $x$ and $y$.

$$
b^{3 / 2} x^{3 / 2} \frac{b^{p}}{b} \frac{d y}{d x}=d b^{3 / 2} x^{3 / 2} b^{3 p} y^{3}+a
$$

Combine the $b$ terms on both sides.

$$
b^{p+1 / 2} x^{3 / 2} \frac{d y}{d x}=b^{3(p+1 / 2)} d x^{3 / 2} y^{3}+a
$$

Notice that if $p=-1 / 2$, then the $b$ terms go away and we're back to equation (1). Thus, the ODE is scale invariant under the transformation, $x \rightarrow b x, y \rightarrow b^{-1 / 2} y$. This means we can make the substitution,

$$
y(x)=x^{-1 / 2} u(x),
$$

to make the ODE equidimensional. Take the derivative to find out what $y^{\prime}$ is in terms of $u$.

$$
\frac{d y}{d x}=-\frac{1}{2} x^{-3 / 2} u+x^{-1 / 2} \frac{d u}{d x}
$$

Substitute these expressions into equation (1).

$$
x^{3 / 2}\left(-\frac{1}{2} x^{-3 / 2} u+x^{-1 / 2} \frac{d u}{d x}\right)=d x^{3 / 2}\left(x^{-1 / 2} u\right)^{3}+a
$$

Expand both sides.

$$
\begin{equation*}
x \frac{d u}{d x}-\frac{1}{2} u=d u^{3}+a \tag{2}
\end{equation*}
$$

This is a first-order equation that can be solved with separation of variables.

$$
x \frac{d u}{d x}=d u^{3}+\frac{1}{2} u+a .
$$

Separate variables.

$$
\frac{d u}{d u^{3}+\frac{1}{2} u+a}=\frac{d x}{x}
$$

Integrate both sides.

$$
\int^{u} \frac{d s}{d s^{3}+\frac{1}{2} s+a}=\ln |x|+C
$$

Because of the term with $x^{3 / 2}$ in the ODE we started with, $x$ is implied to be greater than zero, so the absolute value sign can be removed. Now that the integration is done, change back to the original variable $y$.

$$
\int^{\sqrt{x} y} \frac{d s}{d s^{3}+\frac{1}{2} s+a}=\ln x+C
$$

This is only an implicit solution for $y$ but a solution nonetheless.
From equation (2), one can make the exponential substitution, $x=e^{t}$, to make the ODE autonomous.

$$
\frac{d u}{d t}-\frac{1}{2} u=d u^{3}+a
$$

Perhaps there is an explicit solution for $u$, but I can't see it.

